Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Principal component analysis (PCA) and genetic diversity studies for discrimination of genotypes and yield parameters in ICRISAT Pearl Millet [Pennisetum glaucum (L.) R. Br.] accessions

DOI
https://doi.org/10.14719/pst.8243
Submitted
14 March 2025
Published
20-08-2025

Abstract

PCA and cluster analysis were used to assess 50 pearl millet genotypes for 26 attributes to identify associations among individuals as well as their traits and patterns of variation. Among 26 PCs (Principal Components), eight unveiled eigenvalues greater than one, which accounted for 78.29 % of the total variability among the traits. The first component (PC1) had a great maximum variability of about 18.53 % with the highest eigenvalue. It was observed that PC1 revealed maximum variation in comparison with other 25 PCs, whereas PC2 to PC8 showed gradual reduction in variability with values 17.38, 11.71, 8.17, 7.37, 5.63, 5.0 and 4.49 percent respectively. Therefore, selecting lines and traits based on PC1 would be beneficial. The factor loading of PCs exhibited that PC1 accounted for maximum variability for traits like NTrPP (number of tillers per plant), LAI (leaf area index) and GY (grain yield) per plant. PC2 counted for 17.38 % of the total variance and exhibited the greatest variability for number of leaves per plant (NLPP). PC3 showed 11.71 % variability and taken maximum variability for leaf:stem ratio (LSR). PC4 exhibited 8.17 % of variability and possessed maximum variability for plant height (PtH), leaf width (LfW), flag leaf width (FgLW) and stem girth (SG) which pointed out the huge impact in the total variation of the genotypes. Cluster analysis recorded cluster III had desirable mean values for most of the traits studied. The genotype, viz. IP 8327 from cluster III would be used as parent for pearl millet improvement program.

References

  1. 1. Srivastava RK, Singh RB, Pujarula VL, Srikanth B, Pusuluri M, Chellapilla TS, et al. Genome-wide association studies and genomic selection in pearl millet: Advances and prospects. Front Genet. 2019;10:1389. https://doi.org/10.3389/fgene.2019.01389
  2. 2. Singh J, Chhabra AK. Genetic variability and character association in advance inbred lines of pearl millet under optimal and drought condition. Ekin J Crop Breed Genet. 2018;4(2):45-51.
  3. 3. Mohan N and Singh S. Efect of organic manures and sources of sulphur on growth and yield of kharif pearl millet (Pennisetum glaucum L.). Pharma Inn J. 2022: 11(3) :2257–2261.
  4. 4. Tara SC, Sapna T, Bharadwaj C, Rao AR, Bhat J, Singh SP. Genetic diversity analysis in a novel set of restorer lines of pearl millet (Pennisetum glaucum (L.) R. Br) using SSR markers. Vegetos. 2013;26(1):72-82. https://doi.org/10.5958/j.2229-4473.26.1.011
  5. 5. Satyavathi CT, Ambawat S, Khandelwal V, Srivastava RK. Pearl millet: A climate-resilient nutricereal for mitigating hidden hunger and provide nutritional security. Front Plant Sci. 2021;12:659938. https://doi.org/10.3389/fpls.2021.6599385.
  6. 6. Department of Agriculture. Seasonal crop report 2021-2022. Tamil Nadu: Government of Tamil Nadu; 2022.
  7. 7. Ministry of Agriculture and Farmers Welfare. 2022. https://www.agriwelfare.gov.in
  8. 8. Tako E, Reed SM, Budiman J, Hart JJ, Glahn RP. Higher iron pearl millet (Pennisetum glaucum L.) provides more absorbable iron that is limited by increased polyphenolic content. Nutr J. 2015;14:11. https://doi.org/10.1186/1475-2891-14-11
  9. 9. Gayathridevi G, Shanthi P, Suresh R, Manonmani S, Geetha S, Sathyabama K, et al. Genetic variability, association and multivariate analysis for yield and yield parameters in rice (Oryza sativa L.) landraces. Electron J Plant Breed. 2023;14(3):991-9. https://doi.org/10.37992/2023.1403.136
  10. 10. Kumari BK, Kumar BR, Jyothula D, Rao NM. Diversity analysis in rice breeding lines for yield and its components using principal component analysis. J Pharmacogn Phytochem. 2021;10(1):905-9. https://doi.org/10.22271/phyto.2021.v10.i1m.13451
  11. 11. Mahalanobis PC. On the generalized distance in statistics. Proc Natl Inst Sci India. 1936;2:49-55.
  12. 12. Singh RK, Chaudhary BD. Biometrical methods in quantitative genetics analysis. New Delhi: Kalyani Publishers. 1977;318.
  13. 13. Massay WF. Principal components regression in exploratory statistical research. J Am Stat Assoc. 1965;60(309):234-46. https://doi.org/10.2307/2283149
  14. 14. Jolliffie I.T. 1986. Principal Component Analysis. Springer, New York.
  15. 15. Jeffers JNR. Two case studies in the application of principal component analysis. J R Stat Soc C Appl Stat. 1967;16(3):225-36. https://doi.org/10.2307/2985919
  16. 16. Sharma V, Sharma LD, Jakhar ML, Govindraj M, Singh RV, Sharma SK, et al. Genetic diversity in pearl millet inbred restorers for agro-morphological and grain quality traits. Electron J Plant Breed. 2020;11(1):310-3. https://doi.org/10.37992/2020.1101.055
  17. 17. Swamynatham S, Kumar MH, Reddy DM, Latha P. Genetic divergence studies in pearl millet (Pennisetum glaucum (L.) R. Br.). Electron J Plant Breed. 2020;11(1):76-80. https://doi.org/10.37992/2020.1101.013
  18. 18. Nirubana V, Ganesamurthy K, Ravikesavan R, Chitdeshwari T. Genetic diversity studies in Kodo millet (Paspalum scrobiculatum L.) germplasm accessions based on biometrical and nutritional quality traits. Int J Curr Microbiol App Sci. 2017;6(10):832-9. https://doi.org/10.20546/ijcmas.2017.610.099
  19. 19. Gunguniya DF, Kumar S, Patel MP, Sakure AA, Patel R, Kumar D, et al. Morpho-biochemical characterization and molecular marker based genetic diversity of pearl millet (Pennisetum glaucum (L.) R. Br.). PeerJ. 2023;11:e15403. https://doi.org/10.7717/peerj.15403
  20. 20. Amudha K. Multivariate diversity analysis of yield and yield components in pearl millet (Pennisetum glaucum (L.) R. Br). Bangladesh J Bot. 2024;53(4):1035-42. https://doi.org/10.3329/bjb.v53i4.78633
  21. 21. Andhale GR, Shinde CS, Bhavsar VV, Barhate KK. Estimation of variability and genetic diversity in different genotypes of pearl millet (Pennisetum glaucum L.). Int J Adv Biochem Res. 2024;8(9S):207-13. https://doi.org/10.33545/26174693.2024.v8.i9Sc.2087
  22. 22. Sumathi P, Lalithkannan R, Revathi S. Genetic analysis and diversity studies in pearl millet (Pennisetum glaucum (L.) R. Br.). Electron J Plant Breed. 2016;7(4):1014-9. https://doi.org/10.5958/0975-928X.2016.00139.3
  23. 23. Sumathi, P., and N. Kumari Vinodhana. Estimation of Genetic relatedness among the germplasm accessions of Pearl millet [Pennisetum glaucum (L.) R. Br.]. Plant Gene and Trait. 2014;5 (9):1-5.
  24. 24. Ramya AR, Ahamed ML, Srivastava RK. Genetic diversity analysis among inbred lines of pearl millet (Pennisetum glaucum (L.) R. Br.) based on grain yield and yield component characters. Int J Curr Microbiol App Sci. 2017;6(6):2240-50. https://doi.org/10.20546/ijcmas.2017.606.266
  25. 25. Kaushik J, Vart D, Kumar M, Nehra M, Kumar R. Genetic diversity assessment of pearl millet maintainer lines. J Pharmacogn Phytochem. 2018;7(5):2428-32.
  26. 26. Animasaun DA, Morakinyo JA, Krishnamurthy R, Mustapha OT. Genetic divergence of Nigerian and Indian pearl millet accessions based on agronomical and morphological traits. J Agric Sci (Belgrade). 2017;62(2):115-31. https://doi.org/10.2298/JAS1702115A
  27. 27. Gupta D, Khandelwal V. Principal component analysis for yield and its attributing characters of pearl millet (Pennisetum glaucum L.). Ann Plant Soil Res. 2022;24(3):408-14. https://doi.org/10.47815/apsr.2022.10184
  28. 28. Narasimhulu R, Satyavathi CT, Reddy BS, Ajay BC. Principal components of genetic diversity and association studies for yield related traits in pearl millet. Electron J Plant Breed. 2022;13(1):175-81. https://doi.org/10.37992/2022.1301.025
  29. 29. Sayed MRI, Rajab MN, Helmy AA. Phenotypic characterization and genetic divergence of some pearl millet genotypes based on cluster and principal component analysis. J Plant Prod Mansoura Univ. 2022;13(12):875-81. https://doi.org/10.21608/jpp.2022.171474.1184
  30. 30. Karunya N, Iyanar K, Ravikesavan R, Chitdeshwari T. Principal component and diversity analysis for discrimination of genotypes and yield related traits in pearl millet (Pennisetum glaucum (L.) R. Br.). Electron J Plant Breed. 2023;12(3):855-60. https://doi.org/10.37992/2021.1203.119
  31. 31. Diwan D, Jain SK. Principal component and cluster analysis for quantitative traits to identify high yielding genotypes of pearl millet (Pennisetum glaucum (L.) R. Br.). Forage Res. 2021;46(4):308-14.
  32. 32. Shashibhushan D, Kumar CVS, Kondi RKR. Principal component analysis for yield and yield related traits in pearl millet cultivars. Eco Env Conserv. 2022;28(Suppl. Issue):S104-7. https://doi.org/10.53550/EEC.2022.v28i06s.017

Downloads

Download data is not yet available.