Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

A comprehensive review of biomass energy from agroforestry residues

DOI
https://doi.org/10.14719/pst.8384
Submitted
19 March 2025
Published
20-08-2025

Abstract

The rapid growth of the global population, particularly in urban areas of developing countries, has led to an increase in energy consumption and environmental challenges, necessitating the search for sustainable energy solutions. Biomass energy, derived from organic materials such as agroforestry residues, presents a promising avenue for addressing these challenges by offering a renewable and potentially carbon-neutral energy source. This paper explores the potential of agroforestry residues as a sustainable biomass energy source, examining the availability, technological conversion processes, environmental impacts and socio-economic benefits. Agroforestry, a land use system integrating trees and crops, generates significant residues that can be transformed into energy, thereby contributing to rural development, energy security and climate change mitigation. The review highlights the challenges and opportunities associated with biomass energy production, including sustainability concerns, technological and logistical hurdles and the need for supportive policy frameworks. Successful case studies underscore the feasibility and benefits of converting agroforestry residues into bioenergy, emphasizing its role in a circular economy and its contribution towards achieving renewable energy targets and sustainability goals. The paper concludes that, with appropriate management and technological innovation, biomass energy from agroforestry residues can play a pivotal role in the global transition to renewable energy, enhancing environmental sustainability and socio-economic development.

References

  1. 1. Desai BG. CO₂ emissions—Drivers across time and countries. Curr Sci. 2018;115:386–7.
  2. 2. Weinmaster M. Are green walls as “green” as they look? An introduction to the various technologies and ecological benefits of green walls. J Green Build. 2009;4(4):3–18.
  3. 3. Perea Moreno M A, Hernandez Escobedo Q, Perea Moreno A J. Renewable Energy in Urban Areas: Worldwide Research Trends. Energies. 2018;11:577. https://doi.org/10.3390/en11030577
  4. 4. Perea Moreno MA, Samerón Manzano E, Perea Moreno AJ. Biomass as renewable energy: Worldwide research trends. Sustainability. 2019;11(3):863. https://doi.org/10.3390/su11030863
  5. 5. Lu C, Li W. A comprehensive city level GHGs inventory accounting quantitative estimation with an empirical case of Baoding. Sci Total Environ. 2019;651:601–13. https://doi.org/10.1016/j.scitotenv.2018.09.223
  6. 6. Mulder KF. Strategic competences for concrete action towards sustainability: An oxymoron? Engineering education for a sustainable future. Renew Sust Energy Rev. 2017;68:1106–11. https://doi.org/10.1016/j.rser.2016.03.038
  7. 7. Kander A, Lindmark M. Energy consumption, pollutant emissions and growth in the long run: Sweden through 200 years. Eur Rev Econ Hist. 2004;8(3):297–335. https://doi.org/10.1017/S1361491604001224
  8. 8. Li MH, Luo N, Lu Y. Biomass energy technological paradigm (BETP): trends in this sector. Sustainability. 2019;9(4):567. https://doi.org/10.3390/su9040567
  9. 9. Winkler H, Marquand A. Changing development paths: from an energy intensive to low carbon economy in South Africa. Clim Dev. 2009;1(1):47–65. https://doi.org/10.3763/cdev.2009.0003
  10. 10. Lebel L, Lorek S. Enabling sustainable production consumption systems. Annu Rev Environ Resour. 2008;33(1):241–75. https://doi.org/10.1146/annurev.environ.33.022007.145734
  11. 11. Vinkhuyzen OM, Karlsson Vinkhuyzen SI. The role of moral leadership for sustainable production and consumption. J Clean Prod. 2014;63:102–13. https://doi.org/10.1016/j.jclepro.2013.06.045
  12. 12. Falcone PM, González García S, Imbert E, Lijó L, Moreira MT, Tani A, et al. Transitioning towards the bio economy: Assessing the social dimension through a stakeholder lens. Corp Soc Responsib Environ Manag. 2019;26(5):1135–53. https://doi.org/10.1002/csr.1791
  13. 13. Lee M, Lin YL, Chiueh PT, Den W. Environmental and energy assessment of biomass residues to biochar as fuel: a brief review with recommendations for future bioenergy systems. J Clean Prod. 2020;251:119714. https://doi.org/10.1016/j.jclepro.2019.119714
  14. 14. Gupta A, Verma JP. Sustainable bio ethanol production from agro residues: a review. Renew Sust Energy Rev. 2015;41:550–67. https://doi.org/10.1016/j.rser.2014.08.032
  15. 15. Shah J, Valaki J. A comprehensive review on feasibility of different agro residues for production of bio oil, bio char and pyro gas. J Kukm Univ. 2023;35(1):08. https://doi.org/10.17576/jkukm 2023 35(1) 08
  16. 16. Algieri A, Andiloro S, Tamburino V, Zema DA. The potential of agricultural residues for energy production in Calabria (Southern Italy). Renew Sust Energy Rev. 2019;104:1–4. https://doi.org/10.1016/j.rser.2019.01.001
  17. 17. Singh R, Babu JN, Kumar R, Srivastava P, Singh P, Raghubanshi AS. Multifaceted application of crop residue biochar as a tool for sustainable agriculture: an ecological perspective. Ecol Eng. 2015;77:324–47. https://doi.org/10.1016/j.ecoleng.2015.01.011
  18. 18. Blanco Canqui H. Energy crops and their implications on soil and environment. Agron J. 2010;102(2):403–19. https://doi.org/10.2134/agronj2009.0333
  19. 19. Mehedintu A, Sterpu M, Soava G. Estimation and forecasts for the share of renewable energy consumption in final energy consumption by 2020 in the European Union. Sustainability. 2018;10(5):1515. https://doi.org/10.3390/su10051515
  20. 20. Muresan AA, Attia S. Energy efficiency in the Romanian residential building stock: a literature review. Renew Sust Energy Rev. 2017;74:349–63. https://doi.org/10.1016/j.rser.2017.02.022
  21. 21. Contescu CI, Adhikari SP, Gallego NC, Evans ND, Biss BE. Activated carbons derived from high temperature pyrolysis of lignocellulosic biomass. Coatings. 2018;4(3):51. https://doi.org/10.3390/c4030051
  22. 22. Li G, Liu C, Yu Z, Rao M, Zhong Q, Zhang Y, Jiang T. Energy saving of composite agglomeration process (CAP) by optimized distribution of pelletized feed. Energies. 2018;11(9):2382. https://doi.org/10.3390/en11092382
  23. 23. Williams O, Taylor S, Lester E, Kingman S, Giddings D, Eastwick C. Applicability of mechanical tests for biomass pellet characterisation for bioenergy applications. Materials. 2018;11(8):1329. https://doi.org/10.3390/ma11081329
  24. 24. Perea Moreno AJ, Perea Moreno MÁ, Dorado MP, Manzano Agugliaro F. Mangifera indica stone properties as biofuel and its potential for reducing CO₂ emissions. J Clean Prod. 2018;190:53–62. https://doi.org/10.1016/j.jclepro.2018.04.147
  25. 25. Perea Moreno MA, Manzano Agugliaro F, Hernandez Escobedo Q, Perea Moreno AJ. Peanut shell for energy: properties and its potential to respect the environment. Sustainability. 2018;10:3254. https://doi.org/10.3390/su10093254
  26. 26. Kılkış Ş, Krajačić G, Duić N, Rosen MA. Advancements in sustainable development of energy, water and environment systems. Energy Convers Manage. 2018;176:164–83. https://doi.org/10.1016/j.enconman.2018.09.015
  27. 27. Santiago Freijanes JJ, Mosquera Losada MR, Rois Díaz M, Ferreiro Domínguez N, Pantera A, Aldrey JA, et al. Global and European policies to foster agricultural sustainability: agroforestry. Agrofor Syst. 2021;95(5):775–90.
  28. 28. Mosquera Losada MR, Santiago Freijanes JJ, Rigueiro Rodríguez A, Rodríguez Rigueiro FJ, Arias Martínez D, Pantera A, et al. The importance of agroforestry systems in supporting biodiversity conservation and agricultural production: a European perspective. In: Reconciling agricultural production with biodiversity conservation. Cambridge: Burleigh Dodds Sci Publ; 2020. p. 282. https://doi.org/10.1007/s10457 018 0215 9
  29. 29. Rois Díaz M, Lovric N, Lovric M, Ferreiro Domínguez N, Mosquera Losada MR, Den Herder M, et al. Farmers’ reasoning behind the uptake of agroforestry practices: evidence from multiple case studies across Europe. Agrofor Syst. 2018;92:811–28. https://doi.org/10.1007/s10457 017 0139 9
  30. 30. Jose S. Environmental impacts and benefits of agroforestry. In: Oxford Res Encycl Environ Sci. 2019. https://doi.org/10.1093/acrefore/9780199389414.013.195
  31. 31. Mosquera Losada MR, Rodríguez Rigueiro FJ, Ferreiro Domínguez N, Pantera A, Santiago Freijanes JJ. Agroforestry innovations networks in Europe. In: Proceedings of the 16th International Conference on Environmental Science and Technology. 2019.
  32. 32. Montagnini F, Nair PR. Carbon sequestration: an underexploited environmental benefit of agroforestry systems. In: New Vistas in Agroforestry: A Compendium for 1st World Congress of Agroforestry. 2004. p. 281–95. Springer Netherlands. https://doi.org/10.1007/978-94-017-2424-1_20
  33. 33. Nair VD. Carbon sequestration in agroforestry systems.
  34. 34. Smith P, Gregory PJ. Climate change and sustainable food production. Proc Nutr Soc. 2013;72(1):21–8. https://doi.org/10.1017/S0029665112002832
  35. 35. Thorenz A, Wietschel L, Stindt D, Tuma A. Assessment of agroforestry residue potentials for the bioeconomy in the European Union. J Clean Prod. 2018;176:348–59. https://doi.org/10.1016/j.jclepro.2017.12.143
  36. 36. Li Y, Rezgui Y, Zhu H. District heating and cooling optimization and enhancement – towards integration of renewables, storage and smart grid. Renew Sust Energy Rev. 2017;72:281–94. https://doi.org/10.1016/j.rser.2017.01.061
  37. 37. Manzano Agugliaro F. Gasification of greenhouse residues for obtaining electrical energy in the south of Spain: Localization by GIS. Interciencia. 2007;32(2):131–6.
  38. 38. Perea Moreno MA, Manzano Agugliaro F, Perea Moreno AJ. Sustainable energy based on sunflower seed husk boiler for residential buildings. Sustainability. 2018;10(10):3407. https://doi.org/10.3390/su10103407
  39. 39. Soltero VM, Chacartegui R, Ortiz C, Velázquez R. Potential of biomass district heating systems in rural areas. Energy. 2018;156:132–43. https://doi.org/10.1016/j.energy.2018.05.051
  40. 40. Li Y, Rezgui Y, Zhu H. District heating and cooling optimization and enhancement – towards integration of renewables, storage and smart grid. Renew Sust Energy Rev. 2017;72:281–94. https://doi.org/10.1016/j.rser.2017.01.061
  41. 41. Manzano Agugliaro F. Gasification of greenhouse residues for obtaining electrical energy in the south of Spain: Localization by GIS. Interciencia. 2007;32(2):131–6.
  42. 42. Shah MA, Khan MN, Kumar V. Biomass residue characterization for their potential application as biofuels. J Therm Anal Calorim. 2018;134:2137–45. https://doi.org/10.1007/s10973-018-7560-9
  43. 43. Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Jung J, Hyun S. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresour Technol. 2013;148:196–201. https://doi.org/10.1016/j.biortech.2013.08.135
  44. 44. Rather MA, Khan NS, Gupta R. Hydrothermal carbonization of macrophyte Potamogeton lucens for solid biofuel production. Eng Sci Technol Int J. 2017;20(1):168–74. https://doi.org/10.1016/j.jestch.2016.08.015
  45. 45. Rather MA, Khan NS, Gupta R. Hydrothermal carbonization of macrophyte Potamogeton lucens for solid biofuel production. Eng Sci Technol Int J. 2017;20(1):168–74. https://doi.org/10.1016/j.jestch.2016.08.015
  46. 46. Mata Sánchez J, Pérez Jiménez JA, Díaz Villanueva MJ, Serrano A, Núñez Sánchez N, López Giménez FJ. Statistical evaluation of quality parameters of olive stone to predict its heating value. Fuel. 2013;113:750–6. https://doi.org/10.1016/j.fuel.2013.06.019
  47. 47. González JF, González García CM, Ramiro A, Gañán J, González J, Sabio E, et al. Use of almond residues for domestic heating: study of the combustion parameters in a mural boiler. Fuel Process Technol. 2005;86(12–13):1351–68. https://doi.org/10.1016/j.fuproc.2005.01.022
  48. 48. Arranz JI, Miranda MT, Montero I, Sepúlveda FJ, Rojas CV. Characterization and combustion behaviour of commercial and experimental wood pellets in South West Europe. Fuel. 2015;142:199–207. https://doi.org/10.1016/j.fuel.2014.10.059
  49. 49. Salgado MA, Tarelho LA, Matos MA, Rivadeneira D. Palm oil kernel shell as solid fuel for the commercial and industrial sector in Ecuador: tax incentive impact and performance of a prototype burner. J Clean Prod. 2019;213:104–13. https://doi.org/10.1016/j.jclepro.2018.12.133
  50. 50. Miranda MT, Sepúlveda FJ, Arranz JI, Montero I, Rojas CV. Analysis of pelletizing from corn cob waste. J Environ Manag. 2018;228:303–11. https://doi.org/10.1016/j.jenvman.2018.08.105
  51. 51. Berndes G. Bioenergy and water – the implications of large scale bioenergy production for water use and supply. Glob Environ Change. 2002;12(4):253–71. https://doi.org/10.1016/S0959-3780(02)00040-7
  52. 52. Bhagwat SA, Willis KJ, Birks HJ, Whittaker RJ. Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol. 2008;23(5):261–7.
  53. 53. Beringer TI, Lucht W, Schaphoff S. Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy. 2011;3(4):299–312. https://doi.org/10.1111/j.1757-1707.2010.01088.x
  54. 54. Cashmore M, Gwilliam R, Morgan R, Cobb D, Bond A. The interminable issue of effectiveness: substantive purposes, outcomes and research challenges in the advancement of environmental impact assessment theory. Impact Assess Proj Apprais. 2004;22(4):295–310. https://doi.org/10.3152/147154604781765860
  55. 55. Sadler B, Dalal Clayton B. Strategic environmental assessment: a sourcebook and reference guide to international experience. Routledge; 2012.
  56. 56. Fisher E. Environmental impact assessment: ‘setting the law ablaze’. In: Research handbook on fundamental concepts of environmental law. 2016. p. 422–48. Edward Elgar Publishing. https://doi.org/10.4337/9781784714659.00024
  57. 57. Glasson J, Therivel R. Introduction to environmental impact assessment. Routledge; 2013. https://doi.org/10.4324/9781315881218
  58. 58. Jay S, Jones C, Slinn P, Wood C. Environmental impact assessment: retrospect and prospect. Environ Impact Assess Rev. 2007;27(4):287–300. https://doi.org/10.1016/j.eiar.2006.12.001
  59. 59. Krämer L. Access to environmental information in an open European society – Directive 2003/4. Res Pap Law. 2003;5/2003.
  60. 60. Morris P, Therivel R, editors. Methods of environmental impact assessment. London: Taylor & Francis; 2001.
  61. 61. Noble BF. Introduction to environmental impact assessment: a guide to principles and practice. 2015.
  62. 62. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH. The use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 2008;319(5867):1238–40.
  63. 63. Vanclay F. International principles for social impact assessment. Impact Assessment and Project Appraisal. 2003;21(1):5–12. https://doi.org/10.3152/147154603781766491
  64. 64. Lin BB. The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agroecosystems. Agricultural and Forest Meteorology. 2010;150(4):510–8. https://doi.org/10.1016/j.agrformet.2009.11.010
  65. 65. Chamshama SA, Vyamana VG. Forests and forestry in Tanzania. In: Degraded Forests in Eastern Africa. Routledge; 2010:89–108.
  66. 66. Goldemberg J, Coelho ST. Renewable energy—traditional biomass vs. modern biomass. Energy Policy. 2004;32(6):711–4. https://doi.org/10.1016/S0301-4215(02)00340-3
  67. 67. IRENA. Renewable energy and jobs: Annual review 2019. International Renewable Energy Agency (IRENA), United Arab Emirates. 2019 Jun 9.
  68. 68. Jenkins BM, et al. Biomass bioenergy systems to mitigate climate change and natural resource depletion. Mitigation and Adaptation Strategies for Global Change. 2009;14(4):377–407.
  69. 69. Malmsheimer RW, Heffernan P, Brink S, Crandall D, Deneke F, Galik C, et al. Forest management solutions for mitigating climate change in the United States. Journal of Forestry. 2008;106(3):115–73.
  70. 70. Searchinger TD, Hamburg SP, Melillo J, Chameides W, Havlik P, Kammen DM, et al. Fixing a critical climate accounting error. Science. 2009;326(5952):527–28.
  71. 71. Thompson W, Meyer S. Second generation biofuels and food crops: co-products or competitors? Global Food Security. 2013;2(2):89–96. https://doi.org/10.1016/j.gfs.2013.03.001
  72. 72. Nunes LJ, Casau M, Dias MF, Matias JC, Teixeira LC. Agroforest woody residual biomass-to-energy supply chain analysis: Feasible and sustainable renewable resource exploitation for an alternative to fossil fuels. Results in Engineering. 2023;17:101010. https://doi.org/10.1016/j.rineng.2023.101010
  73. 73. Sharma B, Ingalls RG, Jones CL, Khanchi A. Biomass supply chain design and analysis: Basis, overview, modeling, challenges, and future. Renewable and Sustainable Energy Reviews. 2013;24:608–27. https://doi.org/10.1016/j.rser.2013.03.049
  74. 74. Cambero C, Sowlati T. Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives–A review of literature. Renewable and Sustainable Energy Reviews. 2014;36:62–73. https://doi.org/10.1016/j.rser.2014.04.041
  75. 75. Smeets EM, Lewandowski IM, Faaij AP. The economical and environmental performance of Miscanthus and Switchgrass production and supply chains in a European setting. Renewable and Sustainable Energy Reviews. 2009;13(6–7):1230–45. https://doi.org/10.1016/j.rser.2008.09.006
  76. 76. Berndes G, Hoogwijk M, Van den Broek R. The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass and Bioenergy. 2003;25(1):1–28. https://doi.org/10.1016/S0961-9534(02)00185-X
  77. 77. Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S. Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resources, Conservation and Recycling. 2009;53(8):434–47. https://doi.org/10.1016/j.resconrec.2009.03.013
  78. 78. Dale BE, Anderson JE, Brown RC, Csonka S, Dale VH, Herwick G, et al. Take a closer look: biofuels can support environmental, economic and social goals.
  79. 79. Faaij AP. Bio-energy in Europe: changing technology choices. Energy Policy. 2006;34(3):322–42. https://doi.org/10.1016/j.enpol.2004.03.026
  80. 80. Sims RE, Mabee W, Saddler JN, Taylor M. An overview of second generation biofuel technologies. Bioresource Technology. 2010;101(6):1570–80. https://doi.org/10.1016/j.biortech.2009.11.046

Downloads

Download data is not yet available.