Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Impact of biostimulants on crop growth and soil health - A review

DOI
https://doi.org/10.14719/pst.8499
Submitted
25 March 2025
Published
29-08-2025
Versions

Abstract

Biostimulants are essential for advancing sustainable agriculture by promoting plant growth, soil health and crop productivity. It is derived from organic materials, including microbial and non-microbial components, which undergo an activated biological and physiological process that stimulates nutrient uptake, resists stressful conditions and also regulates plant metabolism. It includes microbial components such as Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth Promoting Rhizobacteria (PGPR) and other nonmicrobial components like protein hydrolysates, seaweed extracts, humic acid, fulvic acid, chitin and chitosan based biostimulants, which plays a significant role through different mode of actions such as modulation in plant hormone, activating antioxidant responses, water and nutrient absorption in soil and crop resilience. Their applications across various agricultural and horticultural crops, where they exhibited enhanced nutrient efficiency, eliminated environmental stress and promoted eco-friendly farming methods. Furthermore, biostimulants showed promising solutions for problematic soils. This review explores the applications of biostimulants and their influence on ensuring food security, enhancing nutrient uptake and stimulating natural processes, improving crop quality, yield and reducing dependency on synthetic fertilizers. Further research should focus on the timely application of biostimulants and their formulations for different crops to increase their potential benefits across agricultural systems.

References

  1. 1. Marousek J, Marouskova A, Zoubek T, Bartos P. Economic impacts of soil fertility degradation by traces of iron from drinking water treatment. Environ Dev Sustain. 2022:1–10. https://doi.org/10.1007/s10668-021-01636-1
  2. 2. Roots Analysis. 2024. Biostimulants market: industry trends and global forecast, 2024–2035 [Internet]. Roots Analysis. [cited 2025 Jul 23]. Available from: https://www.rootsanalysis.com/reports/biostimulants-market.html
  3. 3. Du Jardin P. Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic. 2015;196:3–14. https://doi.org/10.1016/j.scienta.2015.09.021
  4. 4. Sible CN, Seebauer JR, Below FE. Plant biostimulants: A categorical review, their implications for row crop production and relation to soil health indicators. Agron. 2021;11(7):1297. https://doi.org/10.3390/agronomy11071297
  5. 5. Sun W, Shahrajabian MH. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants. 2023;12(17):3101. https://doi.org/10.3390/plants12173101
  6. 6. Marousek J, Gavurova B. Recovering phosphorous from biogas fermentation residues indicates promising economic results. Chemosphere. 2022;291:133008. https://doi.org/10.1016/j.chemosphere.2021.133008
  7. 7. Stavkova J, Marousek J. Novel sorbent shows promising financial results on P recovery from sludge water. Chemosphere. 2021;276:130097. https://doi.org/10.1016/j.chemosphere.2021.130097
  8. 8. Marousek J, Marouskova A, Periakaruppan R, Gokul G, Anbukumaran A, Bohata A, et al. Silica nanoparticles from coir pith synthesized by acidic sol-gel method improve germination economics. Polymers. 2022;14(2):266. https://doi.org/10.3390/polym14020266
  9. 9. Zuzunaga-Rosas J, Boscaiu M, Vicente O. Agroindustrial by-products as a source of biostimulants enhancing responses to abiotic stress of horticultural crops. Int J Mol Sci. 2024;25(6):3525. https://doi.org/10.3390/ijms25063525
  10. 10. Roy D. Role of Biostimulants towards sustainable agriculture: A review. Food Sci Rep. 2024;5(1):47–52.
  11. 11. Kumari M, Swarupa P, Kesari KK, Kumar A. Microbial inoculants as plant biostimulants: A review on risk status. Life. 2022;13(1):12. https://doi.org/10.3390/life13010012
  12. 12. Ciriello M, Fusco GM, Woodrow P, Carillo P, Rouphael Y. Unravelling the nexus of plant response to non-microbial biostimulants under stress conditions. Plant Stress. 2024:100421. https://doi.org/10.3390/life13010012
  13. 13. Kaushal P, Ali N, Saini S, Pati PK, Pati AM. Physiological and molecular insight of microbial biostimulants for sustainable agriculture. Front Plant Sci. 2023;14:1041413. https://doi.org/10.3389/fpls.2023.1041413
  14. 14. Miceli A, Moncada A, Vetrano F. Use of microbial biostimulants to increase the salinity tolerance of vegetable transplants. Agron. 2021;11(6):1143. https://doi.org/10.3390/agronomy11061143
  15. 15. Soussani FE, Boutasknit A, Ben-Laouane R, Benkirane R, Baslam M, Meddich A. Arbuscular mycorrhizal fungi and compost-based biostimulants enhance fitness, physiological responses, yield and quality traits of drought-stressed tomato plants. Plants. 2023;12(9):1856. https://doi.org/10.3390/plants12091856
  16. 16. Parmar P, Kumar R, Neha Y, Srivatsan V. Microalgae as next generation plant growth additives: functions, applications, challenges and circular bioeconomy based solutions. Front Plant Sci. 2023;14:1073546. https://doi.org/10.3389/fpls.2023.1073546
  17. 17. Miranda AM, Hernandez-Tenorio F, Villalta F, Vargas GJ, Saez AA. Advances in the development of biofertilizers and biostimulants from microalgae. Biology. 2024;13(3):199. https://doi.org/10.3390/biology99130301
  18. 18. Marin-Marin CA, Estrada JA, Delgado-Naranjo JM, Zapata-Ocampo PA, Penuela-Vásquez M. Cyanobacteria and microalgae as potential sources of biofertilizers: A review. Actualidades Biologicas. 2024;46(120).
  19. 19. Morillas-Espana A, Perez-Crespo R, Villaro-Cos S, Rodriguez-Chikri L, Lafarga T. Integrating microalgae-based wastewater treatment, biostimulant production and hydroponic cultivation: A sustainable approach to water management and crop production. Front Bioeng Biotechno. 2024;12:1364490. https://doi.org/10.3389/fbioe.2024.1364490
  20. 20. Renganathan P, Puente EOR, Sukhanova NV, Gaysina LA. Hydroponics with microalgae and cyanobacteria: emerging trends and opportunities in modern agriculture. BioTech. 2024;13(3):27. https://doi.org/10.3390/biotech13030027
  21. 21. Colla G, Rouphael Y. Microalgae: new source of plant biostimulants. Agron. 2020; 10(9):1240. https://doi.org/10.3390/agronomy10091240
  22. 22. Leena Banjare DRB, Jataw GK, Shrivastav LK. Effect of seaweed extract on yield and nutrient uptake of rice in a vertisol. Pharm Innov. 2022;11(3):2193–98.
  23. 23. Raja B, Vidya R. Application of seaweed extracts to mitigate biotic and abiotic stresses in plants. Physiol Mol Biol Plants. 2023;29(5):641–61. https://doi.org/10.1007/s12298-023-01313-9
  24. 24. Mote G, Mane M, Bodake P, Thorat T, Mane A, Wahane M, et al. Bio efficacy of foliar applied biostimulants on nutrient uptake, yield and economics of rice (Oryza sativa L.) under lateritic soils of Konkan region. Pharm Innov. 2022;11(12):318–22.
  25. 25. Thaimei T, Bokado K, Bera B. Seaweed extract for sustainable rice production-A review. Int J Plant Soil Sci. 2024;36(7):147–60. https://doi.org/10.9734/ijpss/2024/v36i74716
  26. 26. Sharma HS, Fleming C, Selby C, Rao J, Martin T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol. 2014;26:465–90. https://doi.org/10.1007/s10811-013-0101-9
  27. 27. Ertani A, Francioso O, Tinti A, Schiavon M, Pizzeghello D, Nardi S. Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Front Plant Sci. 2018;9:428. https://doi.org/10.3389/fpls.2018.00428
  28. 28. Shukla PS, Mantin EG, Adil M, Bajpai S, Critchley AT, Prithiviraj B. Ascophyllum nodosum-based biostimulants: sustainable applications in agriculture for the stimulation of plant growth, stress tolerance and disease management. Front Plant Sci. 2019;10:462648. https://doi.org/10.3389/fpls.2019.00655
  29. 29. Wang Y, Lu Y, Wang L, Song G, Ni L, Xu M, et al. Analysis of the molecular composition of humic substances and their effects on physiological metabolism in maize based on untargeted metabolomics. Front Plant Sci. 2023;14:1122621. https://doi.org/10.3389/fpls.2023.1122621
  30. 30. Canellas LP, Canellas NO, da S, Irineu LES, Olivares FL, Piccolo A. Plant chemical priming by humic acids. Chem Biol Technol Agric. 2020;7:1–17. https://doi.org/10.1186/s40538-020-00178-4
  31. 31. Ampong K, Thilakaranthna MS, Gorim LY. Understanding the role of humic acids on crop performance and soil health. Front Agron. 2022;4:848621. https://doi.org/10.3389/fagro.2022.848621
  32. 32. Lv D, Sun H, Zhang M, Li C. Fulvic acid fertilizer improves garlic yield and soil nutrient status. Gesunde Pflanzen. 2022;74(3):685–93. https://doi.org/10.1007/s10343-022-00644-z
  33. 33. Maguey-Gonzalez JA, Nava-Ramirez MdJ, Gomez-Rosales S, Angeles MdL, Solis-Cruz B, Hernandez-Patlan D, et al. Humic acids preparation, characterization and their potential adsorption capacity for aflatoxin B1 in an in vitro poultry digestive model. Toxins. 2023;15(2):83. https://doi.org/10.3390/toxins15020083
  34. 34. Aktsoglou DC, Kasampalis DS, Sarrou E, Tsouvaltzis P, Chatzopoulou P, Martens S, et al. Protein hydrolysates supplement in the nutrient solution of soilless grown fresh peppermint and spearmint as a tool for improving product quality. Agron. 2021;11(2):317. https://doi.org/10.3390/agronomy11020317
  35. 35. Monterisi S, Garcia-Perez P, Buffagni V, Zuluaga MYA, Ciriello M, Formisano L, et al. Unravelling the biostimulant activity of a protein hydrolysate in lettuce plants under optimal and low N availability: A multi-omics approach. Physiol Plant. 2024;176(3):e14357. https://doi.org/10.1111/ppl.14357
  36. 36. Elwaziri E, Ismail H, Abou El-Khair E-S, Al-Qahtani SM, Al-Harbi NA, Abd El-Gawad HG, et al. Biostimulant application of whey protein hydrolysates and potassium fertilization enhances the productivity and tuber quality of sweet potato. Not Bot Horti Agrobot Cluj-Na. 2023;51(2):13122.https://doi.org/10.15835/nbha51213122
  37. 37. Stasinska-Jakubas M, Hawrylak-Nowak B. Protective, biostimulating and eliciting effects of chitosan and its derivatives on crop plants. Molecules. 2022;27(9):2801. https://doi.org/10.3390/molecules27092801
  38. 38. Sun W, Shahrajabian MH, Petropoulos SA, Shahrajabian N. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants. 2023;12(13):2469. https://doi.org/10.3390/plants12132469
  39. 39. Shahrajabian MH, Chaski C, Polyzos N, Tzortzakis N, Petropoulos SA. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules. 2021;11(6):819. https://doi.org/10.3390/biom11060819
  40. 40. Abdel Megeed T, Gharib H, Hafez E, El-Sayed A. Effect of some plant growth regulators and biostimulants on the productivity of Sakha108 rice plant (Oryza sativa L.) under different water stress conditions. Appl Ecol Environ. 2021(19):2859–78. https://doi.org/10.15666/aeer/1904_28592878
  41. 41. Rahaman M, Murmu K, Khandakar J, Bordolui SK, Hedayetullah M. Crop productivity and soil health in relation to the microbial population as influenced by different organic biostimulants in summer rice cultivation. Oryza- Int J Rice. 2022;59(2):194–204. https://doi.org/10.35709/ory.2022.59.2.9
  42. 42. Vaishnavi D, Ravichandran V, Sritharan N, Anandakumar S, Kumar GP, Latha M. Biopriming of seeds with microbial biostimulant (Bacillus megaterium) on improvement of seedling growth, biochemical and root traits of rice (Oryza sativa L.). Plant Sci Today. 2024;11(sp4):1–8. https://doi.org/10.14719/pst.5541
  43. 43. Shultana R ZA, Rana MM, Naher UA, Paul PLC, Akter M, Shupta SA, Roy TK. Exploring indigenous Bacillus spp. as a biostimulant to enhance the growth and yield of rice under glasshouse conditions. Asian J Agric. 2025;9(1).
  44. 44. Ghodake SS, Thorat TN, Rajemahadik VA, Bodake PS, Khobragade NH, Desai SS, et al. Effect of foliar application of biostimulants on growth, yield and yield attributing characters of rice (Oryza sativa L.). J Pharm Innov. 2022;11(11):2134-37.
  45. 45. Gavelienė V, Jurkoniene S. Probiotics enhance cereal yield and quality and modify agrochemical soil properties. Microorganisms. 2022;10(7):1277. https://doi.org/10.3390/microorganisms10071277
  46. 46. Wang S, Tian X, Liu Q. The effectiveness of foliar applications of zinc and biostimulants to increase zinc concentration and bioavailability of wheat grain. Agron. 2020;10(2):178. https://doi.org/10.3390/agronomy10020178
  47. 47. Ramah K, Shanthi P, Ponnusamy K. Productivity enhancement in maize (Zea mays L.) through seaweed extract (Phytozyme) foliar spray. Int J Agric Hortic Allied Sci. 2009;2(8):526–7.
  48. 48. Nephali L, Moodley V, Piater L, Steenkamp P, Buthelezi N, Dubery I, et al. A metabolomic landscape of maize plants treated with a microbial biostimulant under well-watered and drought conditions. Front Plant Sci. 2021;12:676632. https://doi.org/10.3389/fpls.2021.676632
  49. 49. Canellas LP, Canellas NA, Val F, Spaccini R, Mazzei P, Olivares FL. Changes in amino acids profile and uptake on maize seedlings treated with protein hydrolysates and humic substances. Nitrogen. 2024;5(2):439–54. https://doi.org/10.3390/nitrogen5020028.
  50. 50. Mironenko GA, Zagorskii IA, Bystrova NA, Kochetkov KA. The effect of a biostimulant based on a protein hydrolysate of rainbow trout (Oncorhynchus mykiss) on the growth and yield of wheat (Triticum aestivum L.). Molecules. 2022;27(19):6663. https://doi.org/10.3390/molecules27196663
  51. 51. Priyanka Priya , Shikha Singh, Murari Mohan. Influence of organic nutrients on growth and yield of summer greengram (Vigna radiata). J Exp Agric Int. 2024;46(6):333–39. https://doi.org/10.9734/jeai/2024/v46i62485
  52. 52. Mohammed S, El-Sheekh MM, Hamed Aly S, Al-Harbi M, Elkelish A, Nagah A. Inductive role of the brown alga Sargassum polycystum on growth and biosynthesis of imperative metabolites and antioxidants of two crop plants. Front Plant Sci.2023;14:1136325. https://doi.org/10.3389/fpls.2023.1136325
  53. 53. Kocira S, Kocira A, Kornas R, Koszel M, Szmigielski M, Krajewska M, et al. Effects of seaweed extract on yield and protein content of two common bean (Phaseolus vulgaris L.) cultivars. Legume Res Int J. 2018;41(4):589–93. https://doi.org/10.18805/LR-383
  54. 54. Mahdy RM, Al-Saif AM, Ahmed ME, El-Bary TSA, Sharma A, El-Sheshtawy A-Na, et al. Evaluation of two different methods of fulvic acid application (seed priming and foliar spray) on growth, yield and nutritional quality of pea (Pisum sativum L.). Plants. 2024;13(23):3380. https://doi.org/10.3390/plants13233380
  55. 55. Kamran A, Mushtaq M, Arif M, Rashid S. Role of biostimulants (ascorbic acid and fulvic acid) to synergize Rhizobium activity in pea (Pisum sativum L. var. Meteor). Plant Physiol Biochem. 2023;196:668–82. https://doi.org/10.1016/j.plaphy.2023.02.018
  56. 56. Roudgarnejad S, Samdeliri M, Mirkalaei AM, Moghaddam MN. The role of humic acid application on quantitative and qualitative traits of faba bean (Vicia faba L.). Gesunde Pflanzen. 2021;73(4):603–11. https://doi.org/10.1007/s10343-021-00581-3
  57. 57. Verma N, Sehrawat KD, Mundlia P, Sehrawat AR, Choudhary R, Rajput VD, et al. Potential use of ascophyllum nodosum as a biostimulant for improving the growth performance of vigna aconitifolia (Jacq.) marechal. Plants. 2021;10(11):2361. https://doi.org/10.3390/plants10112361
  58. 58. Vishwanatha S, Shwetha B, Koppalkar B, Ashoka N, Ananda N, Umesh M, et al. Response of blackgram (Vigna mungo L.) and soybean (Glycine max L.) to novel bio stimulants in north eastern dry zone of Karnataka. Legume Res Int J. 2022;45(9):1130–36. https://doi.org/10.18805/LR-4858
  59. 59. Bahekar K, Singh K, Dawson J. Effect of Sulphur and Seaweed (Kappaphycus alvarezii) Extract Spray on Growth and Yield of Groundnut. Int J Plant Soil Sci. 2024;36(6):183–87. https://doi.org/10.9734/ijpss/2024/v36i64620
  60. 60. Mannan MA, Yasmin A, Sarker U, Bari N, Dola DB, Higuchi H, et al. Biostimulant red seaweed (Gracilaria tenuistipitata var. liui) extracts spray improves yield and drought tolerance in soybean. Peer J. 2023;11:e15588. https://doi.org/10.7717/peerj.15588
  61. 61. Meyer FR, Junior VO, Bernardes JVS, de Miranda Coelho VP. Aplicacao foliar de bioestimulante a base de extrato de alga marinha na cultura da soja. Revista Caatinga. 2021;34(1):99–107. https://doi.org/10.1590/1983-21252021v34n111rc
  62. 62. Engel DCH, Feltrim D, Rodrigues M, Baptistella JLC, Mazzafera P. Application of protein hydrolysate improved the productivity of soybean under greenhouse cultivation. Agriculture. 2024;14(8):1205. https://doi.org/10.3390/agriculture14081205
  63. 63. Gursoy M. Alone or combined effect of seaweed and humic acid applications on rapeseed (Brassica napus L.) under salinity stress. J Soil Sci Plant Nutr. 2024;24(2):3364–76. https://doi.org/10.1007/s42729-024-01759-0
  64. 64. Lima GBPd, Gomes EF, Rocha GMGd, Silva FdA, Fernandes PD ,et al. Bacilli rhizobacteria as biostimulants of growth and production of sesame cultivars under water deficit. Plants. 2023;12(6):1337. https://doi.org/10.3390/plants12061337
  65. 65. La Bella S, Consentino BB, Rouphael Y, Ntatsi G, De Pasquale C, Iapichino G, et al. Impact of Ecklonia maxima seaweed extract and Mo foliar treatments on biofortification, spinach yield, quality and NUE. Plants. 2021;10(6):1139. https://doi.org/10.3390/plants10061139
  66. 66. Bayat H, Shafie F, Aminifard MH, Daghighi S. Comparative effects of humic and fulvic acids as biostimulants on growth, antioxidant activity and nutrient content of yarrow (Achillea millefolium L.). Sci Hortic. 2021;279:109912. https://doi.org/10.1016/j.scienta.2021.109912
  67. 67. Leporino M, Rouphael Y, Bonini P, Colla G, Cardarelli M. Protein hydrolysates enhance recovery from drought stress in tomato plants: phenomic and metabolomic insights. Front Plant Sci. 2024;15:1357316. https://doi.org/10.3389/fpls.2024.1357316
  68. 68. Celletti S, Astolfi S, Guglielmo N, Colla G, Cesco S, Mimmo T. Evaluation of a legume-derived protein hydrolysate to mitigate iron deficiency in plants. Agron. 2020;10(12):1942. https://doi.org/10.3390/agronomy10121942.
  69. 69. Ramirez-Rodriguez SC, Preciado-Rangel P, Ortega-Ortiz H, Gonzalez-Morales S. Chitosan nanoparticles as biostimulant in lettuce (Lactuca sativa L.) plants. Phyton-Int J Exp Bot. 2024;93:777–87. https://doi.org/10.32604/phyton.2024.048096
  70. 70. Asadi Aghbolaghi M, Sedghi M, Sharifi RS, Dedicova B. Germination and the biochemical response of pumpkin seeds to different concentrations of humic acid under cadmium stress. Agriculture. 2022;12(3):374. https://doi.org/10.3390/agriculture12030374
  71. 71. Dobaria J, Dhruv J, Pandya M. Evaluation of biostimulants effect on various parameters and its relation to insect-pest infestation on two genotypes of Brinjal. Int. J Adv Biochem Res. 2024;8(6):373–80. https://doi.org/10.33545/26174693.2024.v8.i6Se.1312
  72. 72. Aydi-Ben-Abdallah R, Ammar N, Ayed F, Jabnoun-Khiareddine H, Daami-Remadi M. Single and combined effects of Bacillus spp. and brown seaweed (Sargassum vulgare) extracts as bio-stimulants of eggplant (Solanum melongena L.) growth. Adv Hortic Sci. 2021;35(2):151–64. https://doi.org/10.36253/ahsc-9624
  73. 73. Sarangi SK, Mainuddin M, Maji B. Problems, management and prospects of acid sulphate soils in the Ganges Delta. Soil Systems. 2022;6(4):95. https://doi.org/10.3390/soilsystems6040095
  74. 74. Zaman M, Shahid SA, Heng L, Shahid SA, Zaman M, Heng L. Introduction to soil salinity, sodicity and diagnostics techniques. Guidel Salin. Assess Mitig. Adapt Using Nucl Relat Tech. 2018:1–42. https://doi.org/10.1007/978-3-319-96190-3_1
  75. 75. Ramamoorthy P, Ramamoorthy M, Nirubana V. Management of saline and sodic soils. . Int J Agric Sci Technol. 2021;1(1):24–7. https://doi.org/10.51483/IJAGST.1.1.2021.24-27
  76. 76. D’Amato R, Del Buono D. Use of a biostimulant to mitigate salt stress in maize plants. Agron. 2021;11(9):1755. https://doi.org/10.3390/agronomy11091755
  77. 77. Zuzunaga-Rosas J, Silva-Valdiviezo D, Calone R, Lupuţ I, Ibanez-Asensio S, Boscaiu M, MorenoMoreno-Ramon H, et al al. Biochemical responses to salt stress and biostimulant action in tomato plants grown in two different soil types. Hortic. 2023;9(11):1209. https://doi.org/10.3390/horticulturae9111209
  78. 78. El-Nakhel C, Cozzolino E, Ottaiano L, Petropoulos SA, Nocerino S, Pelosi ME, et al. Effect of biostimulant application on plant growth, chlorophylls and hydrophilic antioxidant activity of spinach (Spinacia oleracea L.) grown under saline stress. Horticulturae. 2022;8(10):971. https://doi.org/10.3390/horticulturae8100971
  79. 79. Ikuyinminu E, Goni O, O Connell S. Enhancing irrigation salinity stress tolerance and increasing yield in tomato using a precision engineered protein hydrolysate and Ascophyllum nodosum-derived biostimulant. Agron. 2022;12(4):809. https://doi.org/10.3390/agronomy12040809
  80. 80. Chanthini KM-P, Senthil-Nathan S, Pavithra G-S, Malarvizhi P, Murugan P, Deva-Andrews A, et al. Aqueous seaweed extract alleviates salinity-induced toxicities in rice plants (Oryza sativa L.) by modulating their physiology and biochemistry. Agriculture. 2022;12(12):2049. https://doi.org/10.3390/agriculture12122049
  81. 81. Hussein MH, Eltanahy E, Al Bakry AF, Elsafty N, Elshamy MM. Seaweed extracts as prospective plant growth bio-stimulant and salinity stress alleviator for Vigna sinensis and Zea mays. J Appl Phycol. 2021;33:1273–91. https://doi.org/10.1007/s10811-020-02 330-x
  82. 82. Bantis F, Koukounaras A. Ascophyllum nodosum and silicon-based biostimulants differentially affect the physiology and growth of watermelon transplants under abiotic stress factors: The case of salinity. Plants. 2023;12(3):433. https://doi.org/10.3390/plants12030433
  83. 83. Neupane A, Jakubowski D, Fiedler D, Gu L, Clay SA, Clay DE, et al. Can Phytoremediation-Induced Changes in the Microbiome Improve Saline/Sodic Soil and Plant Health? Agron. 2023;14(1):29. https://doi.org/10.3390/agronomy14010029
  84. 84. Fathima F, Suma R, Asha N, Ananthakumar M, Keshavaiah K. Exploiting biostimulants and micronutrients for optimal rice yield in sodic soil: A strategic approach to salt stress resilience. Plant Arch. 2024;24(1):768–74. https://doi.org/10.51470/PLANTARCHIVES.2024.v24.no.1.105
  85. 85. Ravichandran M, Chinnadurai S, Subha B, Muthulaxmi V, Sivakumar SR, Subbiah S, et al. Ameliorated reclamation potential of Halimeda microloba on sodic soil and its impact on the Vigna radiata. Arab J Geosci. 2023;16(7):404. https://doi.org/10.1007/s12517-023-11509-8
  86. 86. Do Rosario Rosa V, Dos Santos ALF, da Silva AA, Sab MPV, Germino GH, Cardoso FB, et al. Increased soybean tolerance to water deficiency through biostimulant based on fulvic acids and Ascophyllum nodosum (L.) seaweed extract. Plant Physiol Biochem. 2021;158:228–43. https://doi.org/10.1016/j.plaphy.2020.11.008
  87. 87. Jindo K, Olivares FL, Malcher DJdP, Sanchez-Monedero MA, Kempenaar C, Canellas LP. From lab to field: role of humic substances under open-field and greenhouse conditions as biostimulant and biocontrol agent. Front Plant Sci. 2020;11:426. https://doi.org/10.3389/fpls.2020.00426
  88. 88. Pellegrini M, Pagnani G, Bernardi M, Mattedi A, Spera DM, Gallo MD. Cell-free supernatants of plant growth-promoting bacteria: A review of their use as biostimulant and microbial biocontrol agents in sustainable agriculture. Sustainability. 2020;12(23):9917. https://doi.org/10.3390/su12239917
  89. 89. Attia MS, Abdelaziz AM, Al-Askar AA, Arishi AA, Abdelhakim AM, Hashem AH. Plant growth-promoting fungi as biocontrol tool against fusarium wilt disease of tomato plant. J Fungi. 2022;8(8):775. https://doi.org/10.3390/jof8080775
  90. 90. Pereira RV, Filgueiras CC, Doria J, Penaflor MFG, Willett DS. The effects of biostimulants on induced plant defense. Front Agron. 2021;3:630596. https://doi.org/10.3389/fagro.2021.630596
  91. 91. La Spada F, Aloi F, Coniglione M, Pane A, Cacciola SO. Natural biostimulants elicit plant immune system in an integrated management strategy of the postharvest green mold of orange fruits incited by Penicillium digitatum. Front Plant Sci. 2021;12:684722. https://doi.org/10.3389/fpls.2021.684722
  92. 92. Rashad YM, El-Sharkawy HH, Elazab NT. Ascophyllum nodosum extract and mycorrhizal colonization synergistically trigger immune responses in pea plants against Rhizoctonia root rot and enhance plant growth and productivity. J Fungi. 2022;8(3):268. https://doi.org/10.3390/jof8030268
  93. 93. Ali O, Ramsubhag A, Jayaraman J. Biostimulant properties of seaweed extracts in plants: implications towards sustainable crop production. Plants. 2021;10(3):531. https://doi.org/10.3390/plants10030531
  94. 94. Elkhwaga AA, Eldakar HA, Abdelmaksoud HM, Ahmed NE, Gad MA. Biopotential of cyanobacteria, fulvic acid and nano-chitosan in controlling leaf rust of wheat. Asian J Res Crop Sci. 2024;9(2):156–67. https://doi.org/10.9734/ajrcs/2024/v9i2276
  95. 95. Sun W, Shahrajabian MH, Soleymani A. The roles of plant-growth-promoting rhizobacteria (PGPR)-based biostimulants for agricultural production systems. Plants. 2024;13(5):613. https://doi.org/10.3390/plants13050613
  96. 96. Tran TLC, Callahan DL, Islam MT, Wang Y, Arioli T, Cahill D. Comparative metabolomic profiling of Arabidopsis thaliana roots and leaves reveals complex response mechanisms induced by a seaweed extract. Front Plant Sci. 2023;14:1114172. https://doi.org/10.3389/fpls.2023.1114172
  97. 97. Rathor P, Upadhyay P, Ullah A, Gorim LY, Thilakarathna MS. Humic acid improves wheat growth by modulating auxin and cytokinin biosynthesis pathways. AoB Plants. 2024;16(2):plae018. https://doi.org/10.1093/aobpla/plae018
  98. 98. Liang Y, Wang J, Wang Z, Hu D, Jiang Y, Han Y, et al. Fulvic acid alleviates the stress of low nitrogen on maize by promoting root development and nitrogen metabolism. Physiol Plant. 2024;176(2):e14249. https://doi.org/10.1111/ppl.14249
  99. 99. Raguraj S, Kasim S, Md Jaafar N, Nazli MH. Growth of tea nursery plants as influenced by different rates of protein hydrolysate derived from chicken feathers. Agron. 2022;12(2):299. https://doi.org/10.3390/agronomy12020299
  100. 100. Shibana S, Nair DS, Sreekala G, Pillai S, Alex S, Joseph A. Application of Chitin Improves Growth, Yield and Secondary Metabolite Production in Turmeric (Curcuma longa L.). Int J Environ Clim Change. 2023;13(12):1108–17. https://doi.org/10.9734/ijecc/2023/v13i123775
  101. 101. Agriplex India. Biostimulants [Internet]. Bengaluru (IN): Agriplex India; [cited 2025 Jul 23]. Available from: https://agriplexindia.com/collections/biostimulant

Downloads

Download data is not yet available.