Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Review on poisonous pesticides dissipation pattern and their residual effects in cardamom

DOI
https://doi.org/10.14719/pst.8880
Submitted
15 April 2025
Published
06-09-2025 — Updated on 29-09-2025
Versions

Abstract

Cardamom (Elettaria cardamomum), a high-value spice crop, is often subjected to intensive pesticide applications to combat pests and diseases. However, the use of toxic pesticides raises significant concerns regarding their dissipation patterns and residual effects on the ecosystem, harvested produce and human health. This review examines the fate and behavior of toxic pesticides in cardamom cultivation, focusing on their application methods, degradation kinetics and persistence in soil, water and plant tissues. Factors influencing pesticide dissipation such as environmental conditions, soil properties and microbial activity are critically analyzed. The long-term residual impacts on cardamom quality, non-target organisms and consumer safety are also discussed. Furthermore, the review highlights existing regulatory limits, analytical detection methods and potential mitigation strategies to minimize pesticide residues in cardamom. By utilizing existing research, this paper aims to provide insights into sustainable pest management practices that reduce reliance on hazardous chemicals while maintaining ensuring crop productivity and ensuring food safety.

References

  1. 1. Korikanthimath VS, Ankegowda SJ, Akshitha HJ. Cardamom. In: Ravindran PN, Sivaraman K, Devasahayam S, Babu NK, editors. Handbook of Spices in India; 2023. p. 1577–659 https://doi.org/10.1007/978-981-19-3728-6_24
  2. 2. Murugan M. Factors and patterns of pesticides usage and sustainability of cardamom (Elettaria cardamomum (L.) Maton) in Indian Cardamom Hills . Bangalore: National Institute of Advanced Studies (NIAS); 2011.
  3. 3. Pathak VM, Verma VK, Rawat BS, Kaur B, Babu N, Sharma A, et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front Microbio. 2022;13. https://doi.org/10.3389/fmicb.2022.962619
  4. 4. Murthy S, Jiji T, Anitha N. Impact of insecticides on mango pests and their natural enemies. J Bio Control. 2019;33(3):274–78. https://doi.org/10.18311/jbc/2019/22985
  5. 5. Gayathri S, Dev VV, Raj RS, Krishnakumar A, Maya TMV, Krishnan KA. Spatiotemporal evaluation of hydrochemical facies and pesticide residues in the cardamom plantations of Southern Western Ghats, India. Env Nanotech Monitor Manage. 2021;16:100599. https://doi.org/10.1016/j.enmm.2021.100599
  6. 6. Jayalakshmi R, Reshma H. Prevalence of acute pesticide poisoning among pesticide applicators in cardamom plantations: A cross-sectional study from Idukki District, Kerala. Indian J Occup Env Med. 2020;24(3):188. https://doi.org/10.4103/ijoem.ijoem_72_19
  7. 7. Kuruvila A, Devi PI, George T, Murugan M, Sabu SS. Product standards, farmers’ practices and global trade: A critical analysis with respect to pesticide residue levels in Indian small cardamom. Agri Eco Res Rev. 2022;35(conf):75–87. https://doi.org/10.5958/0974-0279.2022.00020.9
  8. 8. Ali S, Ullah MI, Sajjad A, Shakeel Q, Hussain A. Environmental and health effects of pesticide residues. In: Sustainable Agriculture Reviews; 2020. p. 311–36. https://doi.org/10.1007/978-3-030-54719-6_8
  9. 9. Hashimi MH, Hashimi R, Ryan Q. Toxic effects of pesticides on humans, plants, animals, pollinators and beneficial organisms. Asian Plant Res J. 2020:37–47. https://doi.org/10.9734/aprj/2020/v5i430114
  10. 10. Tilak B, Jithin CR, Venugopal KJ. Quality certification of spices: Seven decades of progress. In: Handbook of Spices in India:75 years Research and development; 2024. p. 1037–93 https://doi.org/10.1007/978-981-19-3728-6_19
  11. 11. Vinod KK. Stress in plantation crops: Adaptation and management. In: Springer eBooks; 2011. p. 45–137 https://doi.org/10.1007/978-94-007-2220-0_3
  12. 12. Thankamani CK, Srinivasan V, Remya JS, Murugan M, Dhanya MK, Singh R, et al. Organic farming of spices: Concepts, issues and strategies. In: Handbook of spices in India:75 years of Research and Development; 2024. p. 3949–4054 https://doi.org/10.1007/978-981-19-3728-6_63
  13. 13. Nafeesa M, Murugan M, Remya JS, Preethy TT, Abraham JK. Pesticide scenario and reduction strategies in Indian cardamom farming – present and future perspectives. Curr Sci. 2024;126(8):894. https://doi.org/10.18520/cs/v126/i8/894-902
  14. 14. Sudhakar S, Sivakumar G, Marimuthu R, Paul KP, Ashiba A. Bio-intensive pest and disease management in small cardamom. Skyfox Publishing; 2024. https://doi.org/10.22573/spg.024.978-93-90357-99-4/s/048
  15. 15. Nair KP. Technological advancements in coconut, arecanut and cocoa research: A century of service to the global farming community by the central plantation crops research Institute, Kasaragod, Kerala State, India. Springer eBooks; 2020. p. 377–536 https://doi.org/10.1007/978-3-030-62140-7_11
  16. 16. Keerthi A, Karthikeyan S, Thanga SGV. Occurrence and microbial degradation of fipronil residues in tropical highland rhizosphere soils of Kerala, India. Soil Sedi Cont Int J. 2019;28(4):360–79. https://doi.org/10.1080/15320383.2019.1578336
  17. 17. Das I, Jadhav GS, Jagtap YD, Bhaskar N, Ghangrekar MM. Statistical methods for modelling and performance analysis of bioelectrochemical systems. In: Ghangrekar MM, Duteanu MN, Surampalli YR, Zhang CT, editors. Microbial Electrochemical Technologies: Fundamentals and Applications. Wiley; 2023. p. 583–604. https://doi.org/10.1002/9783527839001.ch23
  18. 18. Murugan M. Present and future climate change in Indian cardamom hills: Implications for cardamom production and sustainability. British J Env Climate Change. 2013:368–90. https://doi.org/10.9734/bjecc/2012/1495
  19. 19. Mamta N, Rao RJ, Wani KA. Status of organochlorine and organophosphorus pesticides in wetlands and its impact on aquatic organisms. Env Claims J. 2019;31(1):44–78. https://doi.org/10.1080/10406026.2018.1519315
  20. 20. Gidado MJ, Gunny AAN, Gopinath SCB, Ali A, Wongs-Aree C, Salleh NHM. Challenges of postharvest water loss in fruits: Mechanisms, influencing factors and effective control strategies - A comprehensive review. J Agri Food Res. 2024;17:101249. https://doi.org/10.1016/j.jafr.2024.101249
  21. 21. Taylor AW, Spencer WF. Volatilization and vapor transport processes. In: Soil Science Society of America book series. 2013. p. 213–69. https://doi.org/10.2136/sssabookser2.c7
  22. 22. George T, Beevi SN, Xavier G, Kumar NP, George J. Dissipation kinetics and assessment of processing factor for chlorpyrifos and lambda-cyhalothrin in cardamom. Env Monitor Assess. 2012;185(6):5277–84. https://doi.org/10.1007/s10661-012-2943-z
  23. 23. Zhang K, Dai Z, Wang W, Dou Z, Wei L, Mao W, et al. Effects of partial root drying on strawberry fruit. European J Horti Sci. 2019;84(1):39–47. https://doi.org/10.17660/ejhs.2019/84.1.6
  24. 24. Bakshi P, Singh AD, Kour J, Jan S, Ibrahim M, Mir BA, et al. Advanced technologies for the remediation of pesticide-contaminated soils. In: Handbook of Assisted and Amendment: Enhanced Sustainable Remediation Technology; 2021. p. 331–53. https://doi.org/10.1002/9781119670391.ch17
  25. 25. Mathew TB, Varghese TS, Vijayasree V, Nair KP, Nithya PR, Seena SM. Pesticide residues in Indian spices. In: Pesticides Residues in Indian Spices; 2023. p. 955–1014. https://doi.org/10.1007/978-981-19-3728-6_17
  26. 26. Negi R, Kashyap B, Dhiman SR, Sharma P, Gupta RK. Standardization of growing medium for growth and flowering of alstroemeria cv. ‘Capri’ under solan-nauni conditions. International J Bio-res Stress Manage. 2022;13(11):1296–301. https://doi.org/10.23910/1.2022.2844
  27. 27. Khandake M, Maldar N. A study of consumer behaviour towards online shopping with special reference to ratnagiri city, Maharashtra - India. Int J Adv Res. 2017;5(12):1058–68. https://doi.org/10.21474/ijar01/6057
  28. 28. Bonmatin JM, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, et al. Environmental fate and exposure; neonicotinoids and fipronil. Env Sci Poll Res. 2014;22(1):35–67. https://doi.org/10.1007/s11356-014-3332-7
  29. 29. Maznah Z, Halimah M, Ismail BS, Idris AS. Evaluating hexaconazole leaching in laboratory and field experiments: effects of application rate, soil type and simulated rainfall. Polish J Env Stud. 2018;27(5):2163–70. https://doi.org/10.15244/pjoes/78043
  30. 30. Rahman MM, Awal MA, Misbahuddin M. Pesticide application and contamination of soil and drinking water. Drinking Water Contaminants in Bangladesh. 2020;11:90–131.
  31. 31. Sivaraman K, Thankamani CK, Srinivasan V. Crop diversification: Cropping system approach for enhancing farmers’ income. In: Handbook of Spices in India: 75 Years of Research and Development; 2023. p. 3847–926. https://doi.org/10.1007/978-981-19-3728-6_61
  32. 32. Mathew KM, Reshma R, Geethu M, Rithin V, Sabu KK, Nadiya F, et al. Data on small cardamom transcriptome associated with capsule rot disease. Data in Brief. 2019;27:104625. https://doi.org/10.1016/j.dib.2019.104625
  33. 33. Murugan M, Kuruvila A, Anandhi A, Pooja A, Ashokkumar K, Dhanya MK, et al. Cardamom agro-environmental interrelationships analysis in Indian cardamom hills. Front Climate. 2023;5. https://doi.org/10.3389/fclim.2023.1107804
  34. 34. Momota Y, Takano H, Azuma M. Survey on parasitoids of shoot, panicle and capsule borer, Conogethes sp. (Lepidoptera: Crambidae) in small cardamom of cardamom hill reserve, Kerala J Bio Control. 2019;33(3):291–94. https://doi.org/10.18311/jbc/2019/22713
  35. 35. Díez AM, Sanromán MA, Pazos M. New approaches on the agrochemicals degradation by UV oxidation processes. Chem Eng J. 2018;376:120026. https://doi.org/10.1016/j.cej.2018.09.187
  36. 36. Xi N, Li Y, Xia X. A review of pesticide phototransformation on the leaf surface: Models, mechanism and influencing factors. Chemosphere. 2022;308:136260. https://doi.org/10.1016/j.chemosphere.2022.136260
  37. 37. Remucal CK. The role of indirect photochemical degradation in the environmental fate of pesticides: a review. Env Sci Process Impacts. 2014;16(4):628. https://doi.org/10.1039/c3em00549f
  38. 38. Alagupalamuthirsolai M, Ankegowda SJ, Murugan M, Sivaranjani R, Rajkumar B, Akshitha HJ. Influence of light intensity on photosynthesis, capsule yield, essential oil and insect pest incidence of small cardamom (Elettaria cardamomum (L.) Maton). J Essential Oil Bear Plants. 2019;22(5):1172–81. https://doi.org/10.1080/0972060x.2019.1690587
  39. 39. Elettaria cardamomum (cardamom). CABI Compendium; 2022. https://doi.org/10.1079/cabicompendium.22167
  40. 40. Nair KP, Mathew TB, Beevi SN, George T, Rajith R, Koshy BA, et al. Evaluation of some cooking ingredients decontaminating selected vegetables from pesticide residues. Entomon. 2015;40(3):169–80. https://doi.org/10.33307/entomon.v40i3.77
  41. 41. Gundi VAKB, Reddy BR. Degradation of monocrotophos in soils. Chemosphere. 2005;62(3):396–403. https://doi.org/10.1016/j.chemosphere.2005.04.076
  42. 42. Sandanayake S, Hettithanthri O, Buddhinie PKC, Vithanage M. Plant uptake of pesticide residues from agricultural soils. In: ˜The Handbook of Environmental Chemistry; 2021. p. 197–223. https://doi.org/10.1007/698_2021_806
  43. 43. Verheyen J, Delnat V, Theys C. Daily temperature fluctuations can magnify the toxicity of pesticides. Current Opinion in Insect Science. 2022 Apr 4;51:100919. https://doi.org/10.1016/j.cois.2022.100919
  44. 44. Murugan M, Kuruvilla A, Devi I, Sabu SS, Mathews N, Ashokkumar K. Governance and strategies to address constraints for the revival of the Indian small cardamom sector. Deleted Journal. 2024 Jun 30;5(2):125–44. https://doi.org/10.62773/jcocs.v5i2.250
  45. 45. Kyriakopoulos G, Doulia D. Adsorption of pesticides on carbonaceous and polymeric materials from aqueous solutions: A review. Separation and Purification Reviews [Internet]. 2006 Aug 29;35(3):97–191. https://doi.org/10.1080/15422110600822733
  46. 46. Pehkonen SO, Zhang Q. The degradation of organophosphorus pesticides in natural waters: A critical review. Critical Rev Environ Sci Techno. 2002;32(1):17–72. https://doi.org/10.1080/10643380290813444
  47. 47. Katagi T. Photodegradation of pesticides on plant and soil surfaces. Rev Environ Contamina Toxicol. 2004:1–78. https://doi.org/10.1007/978-1-4419-9098-3_1
  48. 48. Bernardes MFF, Pazin M, Pereira LC, Dorta DJ. Impact of pesticides on environmental and human health. In: InTech eBooks. 2015. https://doi.org/10.5772/59710
  49. 49. Singh BK, Kuhad RC, Singh A, Lal R, Tripathi KK. Biochemical and molecular basis of pesticide degradation by microorganisms. Critic Rev Biotechnol. 1999;19(3):197–225. https://doi.org/10.1080/0738-859991229242
  50. 50. deBoer GJ, Satchivi N. Comparison of translocation properties of insecticides versus herbicides that leads to efficacious control of pests as specifically illustrated by IsoclastTM Active, a new insecticide and ArylexTM Active, a new herbicide. In: ACS symposium series. 2014. p. 75–93. https://doi.org/10.1021/bk-2014-1171.ch004
  51. 51. Wang CJ, Liu ZQ. Foliar uptake of pesticides-Present status and future challenge. Pest Biochem Physiol. 2006;87(1):1–8. https://doi.org/10.1016/j.pestbp.2006.04.004
  52. 52. Li Z. Modeling plant uptake of organic contaminants by root vegetables: The role of diffusion, xylem and phloem uptake routes. J Hazard Mater. 2022;434:128911. https://doi.org/10.1016/j.jhazmat.2022.128911
  53. 53. Gunther FA. Residue reviews residues of pesticides and other foreign chemicals in foods and feeds / Rückstands-Berichte Rückstände von Pesticiden und Anderen Fremdstoffen in Nahrungs- und Futtermitteln. Springer eBooks; 1966. https://doi.org/10.1007/978-1-4615-8404-9
  54. 54. Zhou X, Chen Z, Wang Z, Sun D, Yang L, Yan G, et al. Effects of the soil moisture content and leaf memory effect on pesticide droplet absorption. Scientia Horticulturae. 2024;329:113040. https://doi.org/10.1016/j.scienta.2024.113040
  55. 55. Juraske R, Castells F, Vijay A, Muñoz P, Antón A. Uptake and persistence of pesticides in plants: Measurements and model estimates for imidacloprid after foliar and soil application. J Hazard Mater. 2008;165(1–3):683–89. https://doi.org/10.1016/j.jhazmat.2008.10.043
  56. 56. Muthusamy M. Effect of heavy metal and nutrient uptake by soils in Indian Cardamom Hills. J Soil Sci Environ Manage. 2012;3(8). https://doi.org/10.5897/jssem11.091
  57. 57. Carlson J. Agricultural and biological engineering / Eco-hydrology - Purdue University. 2011 Dec. https://doi.org/10.5703/1288284314990
  58. 58. Shabeer TPA, Girame R, Utture S, Oulkar D, Banerjee K, Ajay D, et al. Optimization of multi-residue method for targeted screening and quantitation of 243 pesticide residues in cardamom (Elettaria cardamomum) by gas chromatography tandem mass spectrometry (GC-MS/MS) analysis. Chemosphere. 2017;193:447–53. https://doi.org/10.1016/j.chemosphere.2017.10.133
  59. 59. Pratheeshkumar N, Chandran M, Beevi SN, Mathew TB, George T, Paul A, et al. Dissipation kinetics and effect of processing on imidacloprid and its metabolites in cardamom (Elettaria cardamomum Maton). Environmental Monitoring and Assessment. 2015;188(1). https://doi.org/10.1007/s10661-015-5058-5
  60. 60. Giorio C, Safer A, Sánchez-Bayo F, Tapparo A, Lentola A, Girolami V, et al. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 1: new molecules, metabolism, fate and transport. Environ Sci Pollu Res [Internet]. 2017;28(10):11716–48. https://doi.org/10.1007/s11356-017-0394-3
  61. 61. Rasool S, Rasool T, Gani KM. A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chemical Engineering Journal Advances. 2022 ;11:100301. https://doi.org/10.1016/j.ceja.2022.100301
  62. 62. AT K, Thanga VSG. Effect of fipronil on abundance of pPhosphate Solubilizing Microorganisms (PSMs) in the cardamom plantation soils of Idukki district, Kerala, India. Int J Sci Eng Res. 2016;7(7):892–95. https://doi.org/10.14299/ijser.2016.07.005
  63. 63. Farha W, El-Aty AMA, Rahman MdM, Shin HC, Shim JH. An overview on common aspects influencing the dissipation pattern of pesticides: a review. Environmental Monitoring and Assessment. 2016;188(12). https://doi.org/10.1007/s10661-016-5709-1
  64. 64. Paul A, George T, Kumar SV, Mithra I, Zojiya TE. Dissipation and risk assessment of solomon 300 od (beta cyfluthrin 90 + imidacloprid 210 od) in Chilli. Pest Res J. 2020;32(2):277–83. https://doi.org/10.5958/2249-524x.2021.00009.1
  65. 65. Patil R, Khan Z, Pudale A, Shinde R, Shabeer TPA, Patil A, et al. Comprehensive multiresidue determination of pesticides and plant growth regulators in grapevine leaves using liquid- and gas chromatography with tandem mass spectrometry. J Chromato A. 2018;1579:73–82. https://doi.org/10.1016/j.chroma.2018.10.025
  66. 66. Karthik CS, Pariari A, Bhutia KC, Bhutia SO. Processing methodologies for few plantation crops in India (Arecanut, betelvine, cashew, cocoa and oil palm). In: Springer eBooks. 2020. p. 29–39. https://doi.org/10.1007/978-981-15-6121-4_3
  67. 67. Jadhav M, Thekkumpurath AS, Nakade M, Gadgil M, Oulkar D, Arimboor R, et al. Multiresidue method for targeted screening of pesticide residues in spice cardamom (Elettaria cardamomum) by liquid chromatography with Tandem Mass Spectrometry. J AOAC Int. 2017;100(3):603–09. https://doi.org/10.5740/jaoacint.17-0061
  68. 68. Murugan M, Shetty PK, George T, Ravi R, Subbiah A, Vijayakumar K. Pesticide use in Indian Cardamom hills. Int J Soc Eco Sustain Develop. 2014;5(3):65–80. https://doi.org/10.4018/ijsesd.2014070106
  69. 69. Das S, Sharangi AB. Impact of climate change on spice crops. In: Springer eBooks [Internet]. 2018. p. 379–404. https://doi.org/10.1007/978-3-319-75016-3_14
  70. 70. Turmel MS, Speratti A, Baudron F, Verhulst N, Govaerts B. Crop residue management and soil health: A systems analysis. Agri Syst 2014;134:6–16. https://doi.org/10.1016/j.agsy.2014.05.009
  71. 71. Gulati R, Kumari B. Pest management and residual analysis in horticultural crops. 2013. https://doi.org/10.59317/9789390083343
  72. 72. Sonone S, Jadhav S, Sankhla M, Kumar R. Water contamination by heavy metals and their toxic effect on aquaculture and human health through food chain. Letters in Applied NanoBioSci. 2020;10(2):2148–66. https://doi.org/10.33263/lianbs102.21482166
  73. 73. Editors A. Pesticide residues on fruits and vegetables in the United States. Access Science. 2019. https://doi.org/10.1036/1097-8542.br0501191
  74. 74. Gurikar C, Naik MK, Sreenivasa MY. Azotobacter: PGPR activities with special reference to effect of pesticides and biodegradation. In: Springer eBooks. 2016. p. 229–44 https://doi.org/10.1007/978-81-322-2647-5_13
  75. 75. Sharma N, Singhvi R. Effects of chemical fertilizers and pesticides on human health and environment: a review. Int J Agri Environ Biotechnol. 2017;10(6):675. https://doi.org/10.5958/2230-732x.2017.00083.3
  76. 76. Menta C. Soil fauna diversity - function, soil degradation, biological indices, soil restoration. In: InTech eBooks; 2012 https://doi.org/10.5772/51091
  77. 77. Lorenz S, Rasmussen JJ, Süß A, Kalettka T, Golla B, Horney P, et al. Specifics and challenges of assessing exposure and effects of pesticides in small water bodies. Hydrobiologia. 2016;793(1):213–24. https://doi.org/10.1007/s10750-016-2973-6
  78. 78. Murugan M, Ravi R, Anandhi A, Kurien S, Dhanya MK. Pesticide use in Indian cardamom needs change in cultivation practices. Curr Sci. 2017;113(06):1058. https://doi.org/10.18520/cs/v113/i06/1058-1063
  79. 79. Nair KP. Cardamom entomology. In: Springer eBooks. 2020. p. 165–76. https://doi.org/10.1007/978-3-030-54474-4_7
  80. 80. Rahman AS, Barukial NJ, Sarmah NSR, Baruah NRD, Bhattacharjee NA. Metagenomics study of tea rhizosphere soil in elevated carbon dioxide and temperature. Eco Environ Conserv. 2023;29(04):1824–30. https://doi.org/10.53550/eec.2023.v29i04.062
  81. 81. Parthasarathy S, Kalaivanan R, Sangavi R, Lakshmidevi P. Pests and diseases in spices, plantation and tuber crops [Internet]. 2025. https://doi.org/10.1201/9781003623779
  82. 82. Ghoneim K, Hamadah K. Compatibility of entomopathogenic nematodes with agrochemicals and biocontrol potential of their combinations against insect pests: An updated review. Egypt Acad J Bio Sci. 2024;17(2):107–71. https://doi.org/10.21608/eajbsa.2024.365899
  83. 83. Stanley J, Preetha G, Chandrasekaran S, Gunasekaran K, Kuttalam S. Efficacy of neem oil on cardamom Thrips, Sciothrips cardamomi Ramk. and organoleptic studies. Psyche J Entomol. 2014;2014:1–7. https://doi.org/10.1155/2014/930584
  84. 84. Thomas J. Biological control of insect pests of small cardamom. In: Springer eBooks [Internet]; 2001. p. 389–99 https://doi.org/10.1007/978-1-4615-1377-3_23
  85. 85. Hrouzkov S, Matisov E. Fast gas chromatography and its use in pesticide residues analysis. In: InTech eBooks [Internet]; 2011 https://doi.org/10.5772/13997
  86. 86. Ijaz M, Shad SA, Abbas N. Seasonal dynamics of resistance to new chemistry and conventional insecticides in dusky cotton bug, Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae). Int J Tropical Insect Sci. 2023;43(6):2255–61. https://doi.org/10.1007/s42690-023-01126-z
  87. 87. Manzoor F, Pervez M. Pesticide impact on honeybees declines and emerging food security crisis. In: IntechOpen eBooks [Internet]; 2021. https://doi.org/10.5772/intechopen.98871
  88. 88. Rajeevana I, Kavitha P, Chari MS, Reddy MS. Potassium release characteristics in relation to soil properties in soils of major cropping systems in Kurnool district. Agropedology [Internet]. 2019;27(1). https://doi.org/10.47114/j.agroped.2017.jun2
  89. 89. Kumar A, Sharma B, Pandey RS. λ-Cyhalothrin and cypermethrin induce stress in the freshwater muddy fish, Clarias batrachus. Toxicol Environ Chem Rev. 2014;96(1):136–49. https://doi.org/10.1080/02772248.2014.913865
  90. 90. Sánchez-Bayo F. Indirect effect of pesticides on insects and other arthropods. Toxics. 2021;9(8):177. https://doi.org/10.3390/toxics9080177
  91. 91. Hellou J, Lebeuf M, Rudi M. Review on DDT and metabolites in birds and mammals of aquatic ecosystems. Environ Rev. 2012;21(1):53–69. https://doi.org/10.1139/er-2012-0054
  92. 92. Gopakumar B, Chandrasekar SS. Insect pests of cardamom. In: CRC Press eBooks [Internet]; 2002. p. 196–222 https://doi.org/10.1201/9780203216637-13
  93. 93. Senthil-Nathan S. A review of biopesticides and their mode of action against insect pests. Environmental Sustainability [Internet]. 2014:49–63. https://doi.org/10.1007/978-81-322-2056-5_3

Downloads

Download data is not yet available.