Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Physiological and biochemical adaptations of sesame (Sesamum indicum L.) to climate stress: A comprehensive review

DOI
https://doi.org/10.14719/pst.9692
Submitted
29 May 2025
Published
26-08-2025
Versions

Abstract

Sesame (Sesamum indicum L.), often called the queen of oilseeds, plays a crucial role in nutrition, oil production and rural livelihoods. Despite its inherent resilience, sesame remains vulnerable to climate change, especially as it is largely cultivated on rainfed and marginal lands. Rising temperatures, erratic rainfall patterns and extreme weather events significantly affect its productivity. Critical developmental stages such as flowering and seed filling are particularly sensitive, experiencing yield losses up to 40-70 % under combined drought and heat stress. These abiotic stresses also reduce seed size and weight and alter oil quality by disrupting fatty acid composition. However, genotypic variability offers promising drought and heat-tolerant sesame lines with adaptive physiological and biochemical traits. Advances in molecular breeding, omics technologies and genome editing (e.g., CRISPR-Cas9) provide hope for climate-resilient sesame improvement. Agronomic interventions like mulching, biofertilizers and precision irrigation further enhance resilience. This review consolidates recent research on sesame's physiological, biochemical and genetic responses to climate stress and explores integrated strategies for sustainable sesame cultivation under future climate scenarios.

References

  1. 1. Sanni GB, Ezin V, Chabi IB, Missihoun AA, Florent Q, Hamissou Z, et al. Production and achievements of Sesamum indicum industry in the world: past and current state. Oil Crop Sci. 2024;9(3):187-97. https://doi.org/10.1016/j.ocsci.2024.06.002
  2. 2. Babu SG, Saraswathi R, Mahalingam A, Paramasivan M, Manivannan N. Outlook on nutritional importance and breeding strategies for oil and quality improvement in sesame (Sesamum indicum L.). Plant Science Today. 2023;10(4):473-80. https://doi.org/10.14719/pst.1906
  3. 3. Pathak N, Rai AK, Kumari R, Thapa A, Bhat KV. Sesame crop: an underexploited oilseed holds tremendous potential for enhanced food value. Agric Sci. 2014;5(4):519-29. https://doi.org/10.4236/as.2014.54054
  4. 4. Yaseen G, Ahmad M, Zafar M, Akram A, Sultana S, Ahmed SN, et al. Sesame (Sesamum indicum L.). In: Inamuddin, Rajender Boddula, Mohd Imran Ahamed, Abdullah M Asiri, editors. Green sustainable process for chemical and environmental engineering and science. Elsevier; 2021. p. 253-69 https://doi.org/10.1016/B978-0-12-822280-4.00013-8
  5. 5. Langyan S, Yadava P, Sharma S, Gupta NC, Bansal R, Yadav R, et al. Food and nutraceutical functions of sesame oil: an underutilized crop for nutritional and health benefits. Food Chem. 2022;389:132990. https://doi.org/10.1016/j.foodchem.2022.132990
  6. 6. Bezbaruah R, Deka RS. Impact of cluster frontline demonstration on productivity and profitability of greengram in Morigaon district of Assam. J Krishi Vigyan. 2020;9(1):164-9. https://doi.org/10.5958/2349-4433.2020.00157.3
  7. 7. Balouchi H, Soltani Khankahdani V, Moradi A, Gholamhoseini M, Piri R, Heydari SZ, et al. Seed fatty acid changes germination response to temperature and water potentials in six sesame (Sesamum indicum L.) cultivars: Estimating the cardinal temperatures. Agriculture. 2023;13(10):1936. https://doi.org/10.3390/agriculture13101936
  8. 8. Kouighat M, Nabloussi A, Kettani R, Fakhour S, El Fechtali M, Hamdani A. Drought-tolerant sesame mutant lines assessed by physiological traits and stress indices under water deficit conditions. J Agric Food Res. 2023;14:100842. https://doi.org/10.1016/j.jafr.2023.100842
  9. 9. Baghery MA, Kazemitabar SK, Dehestani A, Mehrabanjoubani P. Sesame (Sesamum indicum L.) response to drought stress: susceptible and tolerant genotypes exhibit different physiological, biochemical and molecular response patterns. Physiol Mol Biol Plants. 2023;29(9):1353-69. https://doi.org/10.1007/s12298-023-01365-0
  10. 10. Dossa K, Diouf D, Wang L, Wei X, Zhang Y, Niang M, et al. The emerging oilseed crop Sesamum indicum enters the “Omics” era. Front Plant Sci. 2017;8:1154. https://doi.org/10.3389/fpls.2017.01154
  11. 11. Chowdhury S, Basu A, Kundu S. Overexpression of a new osmotin-like protein gene (SindOLP) confers tolerance against biotic and abiotic stresses in sesame. Front Plant Sci. 2017;8:410. https://doi.org/10.3389/fpls.2017.00410
  12. 12. Wang L, Yu S, Tong C, Zhao Y, Liu Y, Song C, et al. Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol. 2014;15(2):R39. https://doi.org/10.1186/gb-2014-15-2-r39
  13. 13. Bashir H, Khalid M, Ajmad I, Ullah F, Ammar A. Integrating genomics and biotechnological approaches to enhance abiotic stress tolerance in sesame (Sesamum indicum L.). Bull Biol Allied Sci Res. 2023;2023(1):37. https://doi.org/10.54112/bbasr.v2023i1.37
  14. 14. Jahan M, Nassiri-Mahallati M. Modeling the response of sesame (Sesamum indicum L.) growth and development to climate change under deficit irrigation in a semi-arid region. PLoS Clim. 2022;1(6):e0000003. https://doi.org/10.1371/journal.pclm.0000003
  15. 15. Abebe DM, Mengistie DT, Mekonen AA. The influence of climate change on the sesame yield in North Gondar, North Ethiopia: Application Autoregressive Distributed Lag (ARDL) time series model. BMC Plant Biol. 2024;24(1):506. https://doi.org/10.1186/s12870-024-05203-4
  16. 16. Niguse A, Aleme A. Modeling the impact of climate change on production of sesame in Western zone of Tigray, Northern Ethiopia. J Climatol Weather Forecasting. 2015;3(3):3. https://doi.org/10.4172/2332-2594.1000135
  17. 17. Debela GM, Lemma EF. Impacts of adaptation to climate change on farmers’ food security and level of sesame production in Western Ethiopia. Agric Food Secur. 2024;13(1):46. https://doi.org/10.1186/s40066-024-00517-4
  18. 18. Wang X, Wang M, Yan G, Yang H, Wei G, Shen T, et al. Comparative analysis of drought stress-induced physiological and transcriptional changes of two black sesame cultivars during anthesis. Front Plant Sci. 2023;14:1117507. https://doi.org/10.3389/fpls.2023.1117507
  19. 19. Sun J, Rao Y, Le M, Yan T, Yan X, Zhou H. Effects of drought stress on sesame growth and yield characteristics and comprehensive evaluation of drought tolerance. J Henan Agric Sci. 2010;39(6):115-9.
  20. 20. You J, Zhang Y, Liu A, Li D, Wang X, Dossa K, et al. Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress. BMC Plant Biol. 2019;19(1):267. https://doi.org/10.1186/s12870-019-1867-4
  21. 21. Sehgal A, Sita K, Siddique KH, Kumar R, Bhogireddy S, Varshney RK, et al. Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields and nutritional quality. Front Plant Sci. 2018;9:1705. https://doi.org/10.3389/fpls.2018.01705
  22. 22. Djanaguiraman M, Prasad PV, Seppanen M. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem. 2010;48(12):999-1007. https://doi.org/10.1016/j.plaphy.2010.09.009
  23. 23. Firmansyah F, Taryono T, Yudono P. The dynamics of sesame (Sesamum indicum L.) growth type. Ilmu Pertan (Agric Sci). 2012;15(2):30-46. https://doi.org/10.22146/ipas.620
  24. 24. Yadav R, Kalia S, Rangan P, Pradheep K, Rao GP, Kaur V, et al. Current research trends and prospects for yield and quality improvement in sesame, an important oilseed crop. Front Plant Sci. 2022;13:863521. https://doi.org/10.3389/fpls.2022.863521
  25. 25. Cui X, Xie W. Adapting agriculture to climate change through growing season adjustments: Evidence from corn in China. Am J Agric Econ. 2022;104(1):249-72. https://doi.org/10.1111/ajae.12243
  26. 26. Wang X, Zhang J, Zhang J, Zang H, Hu F, Gao T, et al. Assessing changes in climatic suitability for sesame cultivation in China (1978–2019) based on fuzzy mathematics. Agronomy. 2024;14(3):631. https://doi.org/10.3390/agronomy14030631
  27. 27. Mathur S, Agrawal D, Jajoo A. Photosynthesis: response to high temperature stress. J Photochem Photobiol B. 2014;137:116-26. https://doi.org/10.1016/j.jphotobiol.2014.01.010
  28. 28. Bor M, Seckin B, Ozgur R, Yılmaz O, Ozdemir F, Turkan I. Comparative effects of drought, salt, heavy metal and heat stresses on gamma-aminobutyric acid levels of sesame (Sesamum indicum L.). Acta Physiol Plant. 2009;31(3):655-9. https://doi.org/10.1007/s11738-009-0276-2
  29. 29. Su X, Li C, Yu Y, Li L, Wang L, Lu D, et al. Comprehensive transcriptomic and physiological insights into the response of root growth dynamics during the germination of diverse sesame varieties to heat stress. Curr Issues Mol Biol. 2024;46(12):13311-27. https://doi.org/10.3390/cimb46120672
  30. 30. Heckathorn SA, Giri A, Mishra S, Bista D. Heat stress and roots. In: Tuteja N, Gill S, editors. Climate change and plant abiotic stress tolerance. Wiley-VCH; 2013. p. 109-36 https://doi.org/10.1002/9783527675265.ch5
  31. 31. Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, et al. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci. 2017;8:1147. https://doi.org/10.3389/fpls.2017.01147
  32. 32. Lipiec J, Doussan C, Nosalewicz A, Kondracka K. Effect of drought and heat stresses on plant growth and yield: a review. Int Agrophys. 2013;27(4):463-77. https://doi.org/10.2478/intag-2013-0017
  33. 33. Blum A. Drought resistance, water-use efficiency and yield potential-are they compatible, dissonant, or mutually exclusive? Aust J Agric Res. 2005;56(11):1159-68. https://doi.org/10.1071/AR05069
  34. 34. Mourad KA, Othman YIM, Kandeel DM, Abdelghany M. Assessing the drought tolerance of some sesame genotypes using agro-morphological, physiological and drought tolerance indices. BMC Plant Biol. 2025;25(1):352. https://doi.org/10.1186/s12870-025-05010-2
  35. 35. Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants: an overview. Environ Exp Bot. 2007;61(3):199-223. https://doi.org/10.1016/j.envexpbot.2007.05.011
  36. 36. Rani S, Kiranbabu T. Screening sesame (Sesamum indicum L.) germplasm for thermotolerance. Adv Crop Sci Tech. 2017;5:300. https://doi.org/10.4172/2329-8863.1000300
  37. 37. Ganie SA, Foyer CH. Environmental stress in crops: Effects and responses during reproduction. Food Energy Secur. 2023;12(6):e512. https://doi.org/10.1002/fes3.512
  38. 38. Kim KS, Park SH, Jenks MA. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. J Plant Physiol. 2007;164(9):1134-43. https://doi.org/10.1016/j.jplph.2006.06.008
  39. 39. Kumari A, Bhinda MS, Sharma S, Chitara MK, Debnath A, Maharana C, et al. ROS regulation mechanism for mitigation of abiotic stress in plants. In: Reactive oxygen species. IntechOpen; 2021. https://doi.org/10.5772/intechopen.98434
  40. 40. Nadarajah KK. ROS homeostasis in abiotic stress tolerance in plants. Int J Mol Sci. 2020;21(15):5208. https://doi.org/10.3390/ijms21155208
  41. 41. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909-30. https://doi.org/10.1016/j.plaphy.2010.08.016
  42. 42. Mishra N, Jiang C, Chen L, Paul A, Chatterjee A, Shen G. Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms. Front Plant Sci. 2023;14:1110622. https://doi.org/10.3389/fpls.2023.1110622
  43. 43. Golestani M, Pakniyat H. Evaluation of traits related to drought stress in sesame (Sesamum indicum L.) genotypes. J Asian Sci Res. 2015;5(9):465-71. https://doi.org/10.18488/journal.2/2015.5.9/2.9.465.471
  44. 44. Heydari H, Rezayian M, Niknam V, Ebrahimzadeh H. Role of penconazole in salt stress amelioration in Sesamum indicum L. Soil Sci Plant Nutr. 2019;65(3):243-50. https://doi.org/10.1080/00380768.2019.1599330
  45. 45. Awadalla A, Mohammed YA, Aboelezz AA, Talib MA. Effect of foliar spray with proline on the productivity of sesame under different planting methods at Toshka region, Egypt. Aswan Univ J Environ Stud. 2021;2(4):280-9. https://doi.org/10.21608/aujes.2021.225758
  46. 46. Pattnaik D, Dash D, Mishra A, Padhiary AK, Dey P, Dash GK. Emerging roles of osmoprotectants in alleviating abiotic stress response under changing climatic conditions. In: Climate impacts on sustainable natural resource management. Springer; 2021. p. 303-24 https://doi.org/10.1007/978-981-33-4695-7_13
  47. 47. Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol. 2011;14(3):290-5. https://doi.org/10.1016/j.pbi.2011.02.001
  48. 48. Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, Schroeder JI. Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol. 2022;23(10):680-94. https://doi.org/10.1038/s41580-022-00497-8
  49. 49. Nguyen D, Rieu I, Mariani C, van Dam NM. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol Biol. 2016;91(6):727-40. https://doi.org/10.1007/s11103-016-0481-3
  50. 50. Singer SD, Zou J, Weselake RJ. Abiotic factors influence plant storage lipid accumulation and composition. Plant Sci. 2016;243:1-9. https://doi.org/10.1016/j.plantsci.2015.11.003
  51. 51. Wang L, Zhang Y, Li D, Dossa K, Wang ML, Zhou R, et al. Gene expression profiles that shape high and low oil content sesames. BMC Genet. 2019;20(1):45. https://doi.org/10.1186/s12863-019-0731-7
  52. 52. Nawade B, Kumar A, Maurya R, Subramani R, Yadav R, Singh K, et al. Longer duration of active oil biosynthesis during seed development is crucial for high oil yield-lessons from genome-wide in silico mining and RNA-Seq validation in sesame. Plants. 2022;11(21):2980. https://doi.org/10.3390/plants11212980
  53. 53. Ozkan A, Kulak M. Effects of water stress on growth, oil yield, fatty acid composition and mineral content of Sesamum indicum. Afr J Agric Res. 2013;8(44):5585-90. https://doi.org/10.5897/AJAR2013.7161
  54. 54. Tas I, Akcura S, Kaplan M, Jagosz B, Atılgan A, Kocięcka J, et al. The effect of drip irrigation and nitrogen levels on the oil and fatty acid composition of sesame and its economic analysis. Agronomy. 2024;14(9):2092. https://doi.org/10.3390/agronomy14092092
  55. 55. Nilanthi D, Alawathugoda C, Ranawake A. Effects of water stress on yield and some yield components of three selected oil crops; groundnut (Arachis hypogaea L.), sunflower (Helianthus annuus L.) and sesame (Sesamum indicum L.). Int J Sci Res Publ. 2015;5(2):2250-3153.
  56. 56. Pandey BB, Ratnakumar P, Usha Kiran B, Dudhe MY, Lakshmi GS, Ramesh K, et al. Identifying traits associated with terminal drought tolerance in sesame (Sesamum indicum L.) genotypes. Front Plant Sci. 2021;12:739896. https://doi.org/10.3389/fpls.2021.739896
  57. 57. Prabhu KR, Kumar A, Yumkhaibam RS, Janeja HS, Krishna B, Talekar N. A review on conventional and modern breeding approaches for developing climate resilient crop varieties. J Appl Nat Sci. 2023;15(3):795-805. https://doi.org/10.31018/jans.v15i3.4382
  58. 58. Reynolds MP, Hays D, Chapman S. Breeding for adaptation to heat and drought stress. In: Reynolds MP, editor. Climate change and crop production. Wallingford: CABI; 2010. p. 71-91. https://doi.org/10.1079/9781845936334.0071
  59. 59. El Hajj A. Current and future of plant breeding strategies to cope with climate change: a review. Am J Plant Sci. 2016;7(6):806-23. https://doi.org/10.4236/ajps.2016.76077

Downloads

Download data is not yet available.